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The Role of Rotor Impedance in the

Vibration Analysis of Rotorcraft

Part IV of Final Report under
Contract NAS2-7613

As an alternative to a total system vibration analysis with its
lack of visibility of critical dynamic parameters, one often first
determines the dynamic rotor forces and moments acting on a rigid
support, and one then excites the flexible airframe-less-rotor with
these inputs. in an improved method which still retains the advantage
of separate treatment of rotor and airframe, the rotor impedance is
used to correct the input to the airframe. This improved method is
illustrated for a strongly idealized case of vertical excitation and
then for rolling and pitching moment excitatiom of a four bladed
hingeless rotor on an up-focussing flexible mount. Contrary to the
usual approach that represents aeroelastic blade motions by a series
of normal blade modes in vacuum, the aeroelastic rotor impedances are
computed directly with a finite blade element method that includes
aerodynamics. The rotor impedance matrix for 3 or more blades is
determined from the root moment impedance for a single blade by a
simple multiblade transformation rule. Force and moment amplitudes
transferred from the rotor to the support are found to be critically
dependent on the support dynamics. Thus the rotor impedance is shown

to be an essential item in the vibratiom analysis.
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Preface t- Part IV of Final Report under Contract NAS2-7613

Between July 1, 1977 and June 30, 1978 work continued on various
items covered by the research goals of Contract NAS2-7613. This
contract that became effective July 1, 1973 was extended several times
without increase in funding. During FY 1978 it was first extended to
31 December, 1977, and then to 30 June, 1978. No salary contributions
were made during FY 1978. The small remaining amount of unexpended
funds was used only to cover some expenses for typing, computing,
reproduction, and travel.

The work performed during FY 1978 covered 3 areas:

1. An extension of Part III of the Final Report under Contract
NAS2-7613 to the problem of vibration prediction, which is a
contribution to research goal (a) of the work statement. The
result of this work is presented as Part IV of the Final Report
under Contract NAS2-7613. 1In order to make Part IV self con-
tained, the finite element method developed in Part III of the
Finazl Report is outlined in condensed form. A paper essentially
identical with Part IV has been accepted for presentation at the
4th European Rotorcraft and Powered Lift Aircraft Forum at
Stresa, September 1978.

2. A second extension of Part III of the Final Report under Contract
NAS2-7613 to the problem of reducing the order of the charac-
teristic equation for the coupled rotor/airframe system. This
problea had been only briefly discussed in Part III though it is
of great practical significance. Work on the second extension of
Part III is on-going and will probably result in a future publi-
cation.

3. An extension of Part I of the Final Report under Contract
NAS2-7613 to the problem of unsteady wake parameter identifica~
tion from dynamic model tests, using the hub stirring technique
rather than the cyclic pitch stirring technique previously
developed. The hub stirring rotor model has been built and
operated but needs instrumentation and calibration. If con-
tinued, this work will also result in a future publication.

No further reports unaer Contract NAS2-7612 will be forthcoming.
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Nomenclature

EI/EIO, flap-bending stiffness over root value
transfer matrix across massless blade element
transfer matrix across point mass

blade moment over support moment of inertia
blade flap-bending moment, unit Py R3QZ
rotor moment on flexible over moment on rigid support
number of finite elements per blade

polynomials of A

rotor and support impedances

rotor radius

blade shear force, unit pORzﬁ2

blade tension force, unit DORZQZ
state vector
blade airfoil lift slope
number of blades in rotor
blade chord, unit R
aerodynamic damping coefficient at ith station
rotor force on flexible over force on rigid support
aerodynamic coefficient for blade pitch angle
length of blade element, unit R
one half rotor vertical mass
support mass
point mass at station i, unit p R

= .1/2 °
(T/q EI )

EIO/p0 RAQZ blade root flap-bending stiffness

blade tension force parameter

speed parameter

distance of blade station i from rotor center, unit R
time, unit 1/Q

blade deflection, positive up, unit R

a single blade variable

blade pitch angle, positive up

{E] [F] , transfer matrix

azimuth angle of kth blade
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rotor angular speed

hub tilt angle

3pac, Lock number for uniform blaue

real part of complex valued frequency, unit Q
¢ + iw, complex valued frequency, unit Q

air density, unit pO/R2

blade mass per unit length at blade root
excitation circular frequency, unit Q

coupled natural frequency, unit Q

rotor uncoupled natural frequency, unit Q
support uncoupled natural frequency, unit Q (also w

support uncoupled natural frequency producing Wy = o

mR/w, wS/m, frequency ratios

Subscripts

I, I1

i

12, 13
I, R

M, a, ©

sultiblade coordinates, forward and left respectively

outer end of blade element, beginning with 1 at blade tip

elements of a matrix or determinant
imaginary, real parts of a polynomial

polynomials multiplied by MN+1’ o, ©

Superscripts

time differentiation
length differentiation

1° “11

)



Introduction

Recently, a great deal of attention has been paid to the problem
of rotorcraft vibrations. It is generally accepted that rotorcraft
vibrations should be alleviated because they reduce crew p.oficiency,
cause passenger discomfort, produce equipment deterioration and struc-
tural fatigue, and increase maintenance. TFig. 1 taken from reference 1
shows the cockpit vibration exposure limits at cruise speed in terms
of hours of maintained crew proficiency vs. frequency in Hz according
to guidelines in reference 2. The indicated cruise vibration level
for UTITAS and AAH shows substantial improvement over their predecessore,
the UH-1 and the AH-1. Part of the improvement is caused by the
increase in vibration frequency when going from a 2 bladed to a 4
bladed rotor, since humans are less affected by vibratory accelera-
tions at frequencies above 10 Hz,

Presently vibration prediction methods are not reliable. There
is hardly a rotorcraft prototype which did not exhibit during initial
flight testing excessive vibrations. Their reduction to specification
level usually requires an intensive, costly, time and payload consuming
effort. The vibration level is often sensitive to small variatioms in
dynamic parameters so that two rotorcraft from the same production run
can have substantial differences in vibration level. There are a
variety of vibration sources. Most important is usually main rotor
excitation with the blade passage frequency which will be the topic of
this paper. Other sources of vibrations are higher rotor harmonics
particularly with twice blade passage frequency, rotor wake excitation
of the empenage, mass, aero, and damper unbalances, rotor self-excitation
leading to limit cycles, and parametric rotor excitation leading to
fractional harmonics. Each of these vibration sources requires dif-
ferent measures of alleviation. For main rotor excitation of the
airframe the most important means of vibration control is the proper
selection of the frequency spectrum for rotor and airframe. Other
means are passive blade pitch control, active higher harmonic blade
pitch control (not as yet flight tested), rotating system absorbers
(pendulum, bifilar), fixed system absorbers, preferably self-tuning,



and the various means of passive and active rotor isolation. The
vibration prediction method to be discussed here is applicable to all
of these dynamic configurations, since tkLey all require a fully coupled
rotor/airframe analysis.

Rotor/Airframe Impedance Matching

Coupled rotor/airframe vibrations can be and have been treated by
total system analysis, see for example references 3 to 5. The large
computer programs needed for such an analysis can easily obscure the
influence of crucial dynamic parameters on tne vibration level. More
visibility for such parameters is achieved by performing separate
vibration analyses (or testing) for the rotor and for the airframe and
by then matching dynamic forces, moments and deflections at the inter-
face. In its crudest form of matching the rotor reactions on a rigid
support are first determined and then zpplied to the flexible airframe
to establish its response. The design goal is to avoid airframe
resonances to the dynamic rotor inputs. Fig. 2 shows the results of
such an airframe response analysis taken from reference 4. The graph
gives the vertical acceleration amplitude at the pilot station from
+ 10,000 inch pounds pitching moment input at the rotor hub vs. the
excitation frequency for various ballast distributions of the AH-~-56A(AMCS)
helicopter. While the trend is probably true, the results do not
include the effects of the ballast changes on the rotor moment input.
These effects may be substantial.

A better approximation is obtained when an equivalent hub mass is
added that is representative of the rotor impedance at the excitation
frequency. As outlined for example in reference 5, this method of
establishing the airframe response to rotor dynamic inputs has its
limitations. The equivalent masses are different for horizontal and
vertical motions, and the equivalent mass concept also does not consider
aerodynamic damping effects. The correct way of dynamically matching
rotor and airframe is to determine the impedance or mobility matrices

of both substructures at the interface and to write the compatibility



relations for the interface forces and deflections. Reference 5
presents a simple example for this method. Since the cruder method of
exciting the airframe with separately determined rotor input forces is
suggested in textbooks (references 6 and 7) and is also practiced in
industry, it was believed worthwhile to apply the method of impedance
matching to a more complex example and to demonstrate the large changes
in rotor input to the airframe caused by dynamic rotor/airframe
coupling.

The principle of rotor/airframe impedance matching is seen in
Fig. 3. A rotor on a rigid support is schematically shown in Fig. 3a.
The force amplitude on the support is fo. This symbol should be
interpreted as the column of complex valued force and moment ampli-
tudes that the rotor transmits to the rigid support. Fig. 3b shows a
rotor supported by an airframe. Here f represents the dynamic force
column, 2z the deflection column including angular deflections. The
force £ is equal to f0 minus the rotor reaction force due to the

deflection z at the rotor/airframe interface.

£=1,-Q0 2 &)

where QR(A) is the rotor impedance. The same force f acts on the

airframe or rotor support and produces the same deflection z
f=0Q,0) 2 (2)

where QS(A) is the airframe or support impedance. By inserting Eq. (2)
into Eq. (1) one obtains

£ = (1+Q(h) QS(A)‘I)'1 £ (3)

I is the identity matrix.



Rotor and Support Representation by 3 Masses and 2 Springs

Before deriving the impedance matrix for an actual rotor, a
quantitative interpretation of Eq. (3) will be given for the simple
system defined in Fig. 4. The rotor is represented by two vertically
moving equal masses m interconnected by a spring with stiffness KR'

The rotor support is represented by a mass m, and by a spring with

S

stiffness KS. A dynamic force fo with imaginary frequency A acts on

the support mass mg if this mass is rigidly held. The impedances are
now polynomials of A and Eq. (3) can be written

-1,-1
£/£, = (1 + Q) (M) ) (4)
Introducing
2 2
wp = Kp/mp g = Kg/mg ©)
it is easy to show that
G = m G2+ W2/ + (/) )
(1) = mg (12 + ud) Q
Inserting Eqs. (6) and (7) into Eq. (4)
2 2 2 2 2,,-1
£/f, = [1 + (mR/mS)(A + wR/(l + (wR/A) YO+ wg) ] (8)
Selecting a time scale such that wp = 1 we have for f/fO = o the
characteristic equation
A4(1 + mR/mS) + Az (wg + 1+ 2 mR/mS) + wg =0 9

Since the system is conservative the roots of Eq. (9) are purely

imaginary, A = iw. For wp = KR = 0 one has the natural frequency



wy = ws/(l + mR/m,:.‘)l/2 (10)

For e = KR = o the natural frequency is

/2 (11)

wy = wS/(l + 2 mR/mS)1
Eqs. (10) and (11) follow from Eq. (8) for f/f0 = », They are also
directly evident from Fig. 4. In the first case the spring Kg carries
the mass o + mg and is uncoupled from the upper mass my . In the
second case the spring KS carries the mass 2 mR + mg.
For wp = 1 and mR/mS = 2.5 the roots of Eq. (9) are only dependent

on the support uncoupled frequency w They are shown vs. w, in

S’ S
Fig. 5. The higher of the two natural frequencies is for large wg

asymptotic to the value of Eq. (10) for wp = 0. The lower natural
frequency is asymptotic to the line R ™ 1. This asymptotic behavior
for large wg OT KS is also directly evident from Fig. 4. Inserting

A = iw into Eq. (8) and introducing ;k = wR/w . Gs = ws/w one obtains

£/gy = (1 = @ /) + wh/ (@2 - 1)/GE - )17 (12)

Vertical Force Excitation

For a numerical example we select the case of Fig. 5 with ;k =1,
mR/mS = 2.5 and stipulate that the forcing function frequency be
w=1.89. Now ER = 1/1.89 = .53 and Eq. (12) becomes

£/£y = (1 - 1.53/@; -1t (13)

For ;é = 1 when the excitation frequency w is equal to the uncoupled
support frequency Wg s the ratio f/f0 is zero., Absolute values from
Eq. (13) are plotted in Fig. 6. It is seen that the input to the
support mass ug depends critically on the support stiffness as ex-

pressed by the ratio w

g = ws/w.



Eq. (13) can also be derived in a different way making use of the

value ... associated with the coincidence of excitation frequency w with

SN
the coupled system natural frequency e At this frequency f/fo = o

or fo = 0 and we have from Eq. (4)

Qg ) = = Qg () (14)
Thus Eq. (4) becomes

£/£, = (1= Qgluy) Q™™ (15)

Inserting the support impedances from Eq. (7)

2 20,2 2.1
£/£, (1 (wsN wN)/(wS -w)) (16)
Stipulating wy = W and using as before Z% = wS/w
2 2 .
f/f0 = (1 - (wSN - 1)/(wS - 1)) (17)

For the example of Fig. 6 we have EsN = 3/1.89 = 1.59 and Eq. (17)

reduces to Eq. (13). Eqs. (15) and (17) are particularly convenient
suice they use only support data and no rotor data, except that the
support stiffness resulting in a coupled natural frequency of wy =W
must be known. Eq. (17) will be used later in connection with a more

complete rotor analytical model.
It is also of interest to determine the springforce amplitude fS
that the support spring transmits to the base, see Fig. 4. One can

easily derive the expression

-2, =2 =2
f /f ws/(wS - Wy

o/ ) (18)

The absolute values are plotted in Fig. 7 vs. w. assuming as before

S

wen = 1.59. The spring force amplitude is smaller than the rotor

excitation force f0 when ;é < l.1. Fig. 7 also shows the base input
&



-0=

fs/f° for f/f° = 1.0 accozding to
-2 =2
fs/fo wsl(l - ms) (19)

For low support stiffness this base input is much larger than the
actual value, indicating again the error encountered when ignoring
rotor-support coupling.

For a DAVI type of support (Dynamic Antiresomance Vibration
Isolator, see for example references 8 and 9) with a large ratio of
1/a, see Fig. 8, and with an equivalent absorber mass m, = (1/a)2

the force amplitude transferred to the base is

_ =2 -2 =2

fs/fo = (mS mA/(ms + tnA))/(ms “SN) (20)

this base force is zero for
- y 1/2
wg = (mAl(mA + ms)) (21)

The ratio £ /f for m,/m, = 1 and for the same w.. = 1.59 as before is

s’ "o A S SN
also shown in Fig. 7. Zero base input occurs at wg = .7. At this low

support stiffness the base input without DAVI is already rather low,
namely £ /£ = .3.
s o

Froun the preceding example it is evident that the excitation of
the airframe with the rotor force acting on a rigid support can lead
to lasge errors in the response. When the excitation frequency coin-
cides with an uncoupled natural airframe frequency, one would erro-
neously obtain a large resonance response, while actually the response

is medest and no force is transmitted to the airframe.

Rolling and Pitching Impedance Analysis for a Hingeless Rotor

The following rotor impedance analysis neglects chordwise blade
vibrations and is limited to zero advance ratio. The rotor impedance

is not expected to vary drastically with advance ratio as lcng as the
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advance ratio is moderate. Thus the use of rotor inputs to a rigid
support at a given advance ratio together with the impedance at zero
advance ratio should result in a reasonable approximation for the
vibration prediction. Within the advance ratio range in which a
constant coefficient multiblade rotor representation is feasible
(reference 10) it is easy to apply corrections from non-zero advance
ratio. Only when periodic coefficients are required also in multi-
blade coordinates will it be necessary to reformulate the rotor imped-
ance problem.

The impedance analysis uses blade element transfer matrices
similar to those described in reference 11. Each blade element has
constant bending stiffness and is free of distributed loads. The
stiffness can vary stepwise from element to element. Point loads are
assumed to act at the element boundaries. Except for the stepwise
stiffness variation and except for the point loads at the element
boundaries the analysis is exact with no further approximations. This
has the advantage that large beam curvature can be admitted for example
in the cantilever blade root section without the need of a large
number of short elements as they are required for the C 81 computer
program. In reference 11 aerodynamic loads are omitted, so that only
vacuum modes and natural frequencies are obtained. They are not
suitable for computing blade or rotor impedances. In reference 11 the
purely imaginary eigenvalues of the blade characteristic equation are
found by trial and error, a method not feasible for non-conservative
systems with corplex valued natural frequencies.

The four steps to extend reference 11 method to our problem are
the following:

1. Aerodynamic terms are included in the blade transfer matrix as
point loads at the element boundaries using quasi steady theory.

2. Relations between blade root state variables are derived in-
cluding a dynamic bla.le pitch term.

3. Single blade polynomials are transformed into multiblade matrices
applicable to 3 or more blades per rotor.

4, Total system equations are derived by mobility or impedance

matching at the rotor/airframe interface.



-11-

Blade Element Transfer Matrix

The computation procedure will be outlined here. More details
are given in reference 12. As indicated in the Nomenclature all
quantities are non-dimensionalized by using the length unit R, the
time unit 1/2 and the mass unit poR, where po is the bladezmgss per
unit length at the blade root. The force unit then is pOR Q~, the
moment unit is p°R3Q2, etc. A blade element with its inputs at the
boundaries is shown in Fig. 9. There are 5 state variables; shear
force S, bending moment M, slope y', deflection y, and pitch angle 9,

forming the state vector

—
2z wn

X= |y (22)
y
€]
The transfer matrix from one element to the next is defined by
xi+l = [E] [F] X, (23)

The matrix [F] gives the change in state vector from the right side of
the mass my to it; left side. It expresses the efiects of vertical
inertia force (-A mi), of the aerodynamic forces from damping and
from dynamic blade pitch angle distributed as point forces at the
element boundaries (-A cyo gi), and the centrifugal force element from
the mass m, (- m, ri). The matrix [F] also expresses the continuity
relations between the right and left sides of the mass .

' = ! = =
Vi = Yps ¥y =Y. 6p =9 (24)

The matrix [F] has the form
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- -
1 0 0 -0% +re) g
0 1 O -my T, 0

[Fl= |0 0 1 0 ] (25)
0 0 O 1 0
0 ~» 0 0 1 B

The matrix [E] gives the change in state vector from the left side of
the mass m, to the right side of the mass m, + 1. It represents the

exact solution for the bending of a2 uniform beam under tension.

(E] = E E E E 0 (26)

where

Eyy =~ Ep

= - (1/Ti) (cosh(pili) -1

m
[

533 = EA& = cosh(pili)

2}
"

34 = Py sinh(pili) 27

E, ® (1/11) (l/pi) sinh(pili)

te1
n

- (llpi) sinh(pili)
/2

43
(T./q EL.)%
1 1

o
(]

In comparing these expressions with those given in reference 11 one
must note that ) is defined differently leading to the opposite sign

of xz in Eq. (25). Also, the unit of circular frequency in reference 11
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2
is (EIO/pORA)ll'. Here it is the angular rotor speed Q. Introducing

the transfer matrix

(E] [F] = [¢] (28)
Eq. (23) can be written in the form

Riag = (941 %4 (29)
For N point masses one obtains by successive transfer matrix multiplica-

tion, beginning at the blade tip, for the blade root quantities the

following relations

[(Swa| [P %12 %3 %] [ 5] *15
Mo %21 %22 %23 %y M %5
Y| "% %32 %33 %3 Yl % | ® (30)
Ymer| %1 fa2 %43 fea| | 1] | s

The blade state variables with subscript 1 refer to the blade tip,
those with the subscript N+1 refer to the blade root assumed to be at
the rotor center. The blade pitch angle € is assumed to be constant
over the blade radius so that the system of Eq. (30} has only 4 equa-
tions rather than the 5 of Eq. (29). All elements of [¢] are poly-
nomials of A. Eq. (30) completes step 1 of the impedance analysis.

The computations of the aerodynamic coefficients s and g; are straight
forward and not presented here. For a uniform blade they are propor-
tional to the Lock number y which in our non-dimensional units is

given by vy =3 p a c.

Blade Root Moment Impedance

We assume zero vertical motion at the rotor center

Y1 = O (€3]
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The blade tip bending moment and shearforce is zero
M =5 =0 (32)
The two remaining tip variables, y'l and Yy will be expressed in terms

of the blade root variables by inserting Egqs. (31) and (32) into Eq.
(30).

N1 3 4 vy ¢1§1

= + 0 (33)
Mye1 %23 b24 41 | $25

Y N1 ¢33 ®3, [-y'l ¢35
+ 0 (34)

0 %3 LI {_Yl L %45

yl
Computing [yl] from Eq. (34) and substitution into Eq. (33) one obtainms
1l

after some manipulations ior the second of Eq. (33)

Myas Py = 3'gq B (O + 0B, (1) (35)
where
¢33 934 $3 %34
P.(R) = s P (A) =
M o
%3 %44 %43 944
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If the dynamic blade pitch angle © is linearly related to the root
slope, Eq. (35) can be used to determine the blade root bending imped-
]
ance Mn+l/y N1
the root bending impedance is

For a pitch-flap coupling expressed by 6 = k y'N+l’

Meer/Y gop = Py /B, + K By (/BN (36)

Eq. (36) completes step 2 of the impedance analysis.

Transformation to Multiblade Impedance

The relations between single blade and multiblade coordinates

are, when only cyclic terms are retained, see reference 10,

' -
(y N+l)k = o, cos wk + arr sin wk

0

k 1 08 Y - 9

Myyp)y = Mp €08 ¥y + My sin 9,

sin ¢k (37)

Ars M @I refer respectively to nose down hub tilting angle, nose

@rp> My Opp

refer to left hub tilting angle, left rotor moment and left cyclic

I’
down rotor moment, and nose down cyclic pitch input.

input. Eqs. 37 are easily inverted, for example
b
ap = 2/8) D (y'gyp)y cos b (38)
k=1
Eqs. (37) are valid for 3 or more blades, b > 3.
By differentiating the relation between a single blade variable z
and its multiblade counterpart Zps 277

z = z; cos t + 211 sin t (39)

. . 2 .
with respect to the time t and by replacing z, 2z by iz, A~ 2z, and ZI’

EI by AzI, Az z;, etc., one can prove a general rule for transforming
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single blade polynomials into multiblade polynomials. According to

this rule the single blade expression

P(A) z (40)

with P()) a polynomizl, is transformed into the multiblade expression

P_(A) P (‘A)‘l z 1
R 1 1 (1)
-2y ) PO0) Lz
where PR(A) and PI(A) are obtained from
P(A+ 1) = PR(A) + i PI(A) (42)

by separating real from imaginary terms. To apply this rule we write
Eq. (35) as

MN+1 PM(A + i) = y'N+1 Pa (A + i) + ePe (A + 1) 43)

Using the definitions of Eq. (37) the multiblade equations are
[ Pr M) Pmm} [MI ] [ PV Palm] [“I -‘
“hg () B My (- Par ) PO Legg ]

) [Pelm - Peam] rel]
Por ) P,0] Lo

In the absence of cyclic pitch inputs from the control system we have

(44)

according to Fig. 10

0. = A y G.. = A (45)
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Inserting Eq. (45) into Eq. (44) one obtains the rotor impedance
matrix in roll and pitch by premultiplying Eq. (44) with

-1
P B

- PMI(X) PMR(X)

(46)

This completes step 3 of the impedance analysis.

Coupled Rotor/Support Analysis

A coupled rotor/support analysis is performed for the system shown

in Fig. 11. The rotorshaft is assumed to be rigid and connected to a
rigid housing that is supported by an up~-focusing mount with focus on
the rotor center. Thus the hub is rigidly restrained against hori-
zontal and vertical motions. The elastic restraints in pitch and roll
are indicated by the horizontal springs attached to the shaft housing.
There also is a gravitational restraint (pendulum effect) that is to

be included in the support stiffness and in the support natural fre-
quency.

2

The unit for the moments M is p°R3Q . With the time unit

1’ MII
1/9 one then obtains the rotor pitching and rolling moments

3 3
(b/2) oy R" Mp , (b/2) p, R™ Mpg )
For uniform blades
o RO=3T1 (48)
o b
The rotor support dynamic equations without support damping are
wz - Xz 0 a M
I I 1
= 3(b/2) (I /1) (49)
0wl -2 a ’ M
II II I1
— L.
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By inserting [MI ] from Eq. (49) into Eq. (44) one obtains with Eq. (45)

a set of homogenegus equations for a o that are of the form

11
Q3 Q) g

=0 (50)
%1 Wa|  |°]

The coupled system characteristic equation is then given by

=0 (51)

The mode shapes are computed by inserting intc Eq. (50) one of the
eigenvalues obtained from Eq. (51). One then finds that all modes are
either regressing or progressing in the rotating reference system.

This completes step 4 of the analysis as far as coupled system natural
modes and frequencies are concerned. The ratio of the rotor moment on
the flexible support over that on a rigid support will be determined
from Eq. (17) as a function of the support uncoupled natursl frequency.
411 that is required for this purpose is the knowledge of the uncoupled

support frequency'a for which the excitation frequency coincides

SN
with the coupled system natural frequency.

Computational Limitations

The computations were performed on the IBM-360/65 computer using
double precision (16 digits). Single blade computations were made for
5, 8, 10 15 and 20 elements per blade. The number of 20 elements was
found to be too high for the 16 digit precision used. With 10 blade
elements no computational difficvlties were encountered, provided that
the evaluation of the 3 by 3 determinant in Eq. (35) was numerically
optimized by writing
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ool = 0330005845 = 045025) + 034 (8p3845 = ¢43095) = 035(0g304, = 94305,)
(52)

whereby the set ¢33, ¢34, ¢35 represents the column with the highest

values of the elements. A convenient check for adequate computer

nmax, Anmax+1’

etc., in Pe, whereby nmax is the highest power that should occur

precision cousists of looking at the coefficients of A

theoretically in this polynomial. With N point masses nmax = 2N-2 for
PG' If the computer precision is adequate, the coefficients of

Anmax+l’ Anmax+2, etc., are several orders smaller than those of

ATEEX  The accuracy of the computation depend3 on how the determinant
is evaluated, the method of Eq. (52) giving the best results.

Once the single blade problem could be solved without difficulties,
the coupled system solutions posed no further obstacles. The computer
accuracy depends on the highest eigenvalue considered and does not
suffer when the number of eigenvalues is approximately doubled as for
the coupled system, as long as the highest eigenvalue remains approxi-
mately the same. The results presented here were obtained with 8
masses per blade. As compared to an analysis with 10 elements per
blade the first 3 eigenvalues shown here were found to have less than
1% error. The equivalent CPU time to obtain a complete set of eigen-
values for the coupled system was 4 seconds. For 55 cases computed in
one run the CPU time was 34 seconds.

The introduction of more blade degrees of freedom - in~plane
bending and torsion - and of a much higher order of the airframe
impedance polynomials may not lead to computational difficulties, if
the highest eigenvalue of the system is not substantially increased.

If numerical difficulties do occur, the method of reference 13 would

be helpful. According to this method the order of the characteristic
equation is reduced by modalizing and truncating the component mobility
matrices and by applying a correction term to the truncated expressions.
The method has been successfully applied to the problem of Eq. (51).

The results will be reported elsewhere.
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Coupled Rotor and Support Modes

The two parameters that determine the dynamics of the uniform

blade are the non-dimensional blade bending stiffness q and the Lock

1/2

number y. The centrifugal tension force T, occurring in p = (Ti/q)

i
of Eq. (27) can be easily computed for each blade station i. The

blade Lock number occurs as factor in the aerodynamic terms c

i
of Eq. (25). Since q-l/2 is proportional to the rotor angular speed

and 3
it can be used as non~dimensional speed parameter. We select for the
numerical example q-l/2 = 18 and vy = 5. This results in a blade
cantilever first natural frequency in vacuum of 1.06, which is a
realistic value for a hingeless rotor. For the first 3 cantilever
blade bending modes one then obtains the following complex eigenvalues,
whereby R and P denote regressing and progressing modes in the rotating
system respectively.

-1/2 _

Rotor Alone, q 18, y =5

Natural Frequency ¢ * iw

Flap-Bending Hingeless Rotor Hinged Rotor
Mode [ w L : w
I
1R o i 0 .05
-.311 |
1P -.616 | 1.96 . 1.95
2R -.327 1.57 1.57
-.257
2p -.193 3.62 3.57
3R -.240 3.87 3.80
-.229
3P -.214 5.87 5.80

For comparision purpose the eigenvalues for the hinged rotor have been
added, assuming hinges at the rotor center. Since there is no coupling

between blades it is sufficient to perform a single blade analysis,



=21~

whereby from Eq. (36) gu(k) = 0. This gives the imaginary parts w, in
the rotating system. Those in the non-rotating system are obtained by
W= ow, ok 1. The imaginary parts of the eigenvalues are almost the
same for hinged and hingeless rotor. The interblade coupling for the
hingeless rotor affects only the real parts, that is the damping of
the modes. While this damping is the same for progressing and regressing
modes of the hinged rotor, it differs for the hingeless rotor. The
largest difference is for the first progressing mode where the damping
of the hingeless rotor is twice that of the hinged rotor.

The hinged rotor dues not couple with the support shown in Fig, 11.
The coupling of the hingeless rotor is determined by the support
natural frequencies w, wry and by the parameter 3(b/2) Ib/l of Eq. (49).
We select the blade number b = 4 and the ratio of blade moment of
inertia over support moment of inertia of Ib/I = 5. We further stipulate
wp = wpp = ug which means equal support stiffness in pitch and in
rnll. When performing the coupled system analysis it turns out that
only the two hingeless rotor modes 1P and 2R substantially couple with
the support modes, while the higher rotor modes 2P, 3R, 3P are not
much affected by the coupling with the support. The coupling of the
1R mode with the support leaves the imaginary part almost at zero but
introduces substantial damping, resulting in a almost aperiodic mode.

When varying the support stiffness expressed in w_, and keeping

all other parameters (q, y, b, Ib/I) constant, one obt:ins for the
coupled 1P modes the ¢ and  values shown in Fig. 12. The uncoupled
values are indicated in dash lines. There is a region of instability
indicated by a positive real part r between an uncoupled support
frequency of 1.5 and 3.0. Soft mounting a hingeless rotor can thus be
dangerous. Note that we are not concidering so called air resonance
where the in-plane regressing mode becomes unstable but that we have
here a hingeless rotor progressing .lap mode instability cn its soft
support, that is usually called whirl flutter. Similar results would
be obtained for a hinged rotor with sufficiently large off-set of the
hinges from the rotor center.

The r and w values of the coupled 2R mode are shown in Fig. 13.
This graph is quite similar to Fig. 12 for the 1P mode, except that
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there 1s no unstable region of support stiffness. The damping ratio
of the coupled support modes, whether positive or negative, approxi-
mately given by {/w, is not large. This justifies the neglect of
damping in the next sectiom.

Hingeless Rotor Moment Excitation

In order to find out the effect of rotor and support coupling ou
the moment transferred from the rotor to the support, we apply Eq. (17)

to the pitching and rolling moment.
MM = (1 = ((uge/w)? = 1)/ ((ug/w)? - D17 (53)
o SN S

For a 4 bladed rotor the excitation frequency is w = 4. For both the
1P mode (Fig. 12) and the 2R mode (Fig. 13) the uncoupled support
natural frequency w,,, for which the excitation is in resonance with

SN
the coupled rotor-support natural frequency is

wgn = 3.8 (54)
Thus from Eq. (53)
2 -1
M/M0 = (1 + .lO/((wS/é) - 1)) (55)
with M/Mn = 0 for wg = 4.0 (56)

M/M° & o for wg = 3.8 (57)

The relation of IM/MOI vs. w, is shown in Fig. 14. Note the very

S

steep descent of the curve between w, = 3.8 and wg = 4.0. Same as for

S
the example of vertical vibrations shown in Fig. 6, the value IM/Mo] =1
is reached asymptotically for large values of wg representing high

support stiffness. Zero moment transfer from the roto. to the support
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is obtained for w. = 4.0 when the uncoupled support natural frequency

S
is in resonance with the excitation firequency. If damping had been
considered, |M/M_ | would not have reached a value of zero at wg = 4
but rather a minimum value different from zero.

The spring moment transferred to the base is according to Eq. (18)
2

2,2 =
Ms/Mo = mS/(wS w

o) (58)

This ratio is plotted in Fig. 15 vs. w_. and shows that it is less than

S
one for wg < 2.7 where the system is unstable (Fig. 12). Using DAVI's
the base moment could be made almost zero for am uncoupled support

frequency of wg < 3.8. This condition could be unstable.

Conclusion

1. The method of rotor induced vibration prediction by applying the
rotor dynamic forces and moments acting on a rigid support to the
flexible airframe can lead to large errors of either over or
under prediction of vibrations. This method also cannot account
for possible dynamic instabilities from rotor-support coupling.

2. The rotor dynamic forces and moments acting on a rigid support
must be corrected by a term that has as a factor the rotcr imped-
ance taken at the rotor/airframe interface.

3. A practical way of determining the hingeless rotor impedance
mairix for the pitching and rolling moments has teen developed by
first performing a finite element single blade analysis including
aercdynamic terms and by then applying a simple transformation to
multiblade impecances.

4, Extensions of the rotor impedance analysis are desirable with
respect to the following items:

4.1 From zero to moderate advance ratio by using constant
coefficient multiblade equations.
4.2 From moderate to large advance ratio where periodic coef-

ficients in multiblade equations are necen.sary.
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4.3 From a 2 by 2 impedance matrix for roll and pitch to a
higher order impedance matrix to include linear hub forces
and deflections.

4.4 From rigid to flexible blades in chordwise bending and
torsion, using the transfer matrices developed in reference
14 and extending them to include aerodynamics.

4.5 From a simple rotor support to a complete airframe.
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